Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

25,27:26,28-Bis(3,9-dioxa-6-azaundecane-1,11-dioxy)calix[4]arene tetrahydrate

Jong Seung Kim,^a William P. Jensen,^b Chang-Hee Lee,^c $\mathsf{lin}\text{-}\mathsf{Ho}\ \mathsf{Lee}^{\,\mathrm{c}}$ Moon-Iib Kim, $\text{d}\ \mathsf{lin}\text{-}\mathsf{G}$ vu Kim e and Il-Hwan $\mathsf{Sub}^{\mathsf{e}_\ast}$

^a Department of Chemistry, Konyang University, Nonsan, Chungnam 320-711, Korea, ^bThe Chemistry Department, South Dakota State University, Brookings, SD 57007, USA, ^cNeutron Physics Department, Korea Atomic Energy Research Institute, PO Box 105, Yusong, Taejon 305-600, Korea, ^dDepartment of Physics, Soonchunhyang University, Onyang 336-600, Korea, and ^eDepartment of Physics, Chungnam National University, Taejon 305-764, Korea Correspondence e-mail: ihsuh@hanbat.chungnam.ac.kr

Received 27 September 1999 Accepted 14 December 1999

The title compound, $C_{44}H_{54}N_2O_8.4H_2O$, has twofold crystallographic symmetry and consists of a calix[4]arene moiety with four phenyl rings arranged alternately in anti-orientation fashion and two azacrown units attached on the lower rims of calix[4]arene. This seems to offer a big cavity inside the molecule which might possess a potential for forming hostguest complexes.

Comment

Calix[4]arenes have been of particular interest as organic hosts and selective ionophores in inclusion complexation (Gutsche, 1989) and it is known that the calix[4]arenes are able to exist in the following four different conformations: cone (Guelzim et al., 1997; Harkema et al., 1998), partial cone (Kim et al., 1993), 1,2-alternate and 1,3-alternate (Ungaro & Pochini, 1991). In order to investigate the characteristics of the

calix[4]arene compounds, a series of calix[4]arene derivatives has been synthesized and their structures elucidated (Kim et al., 1997; Kim, Pang et al., 1998; Kim, Yu et al., 1998; Kim, Suh et al., 1998; Kim, Kim, Lee et al., 1999; Kim, Kim, Choo et al., 1999).

In the title compound, (I), a half molecule belongs to an asymmetric unit and a molecule is completed by another half primed molecule translated by twofold symmetry along the b axis [symmetry code: (') $1 - x$, y , $\frac{1}{2} - z$] (Fig. 1).

Compound (I) consists of the calix[4]arene molecule adopting the 1,3-alternate conformation (two phenyl groups A and B' lie above and the other two phenyl groups A' and B below the least-squares plane defined by the four bridging methylene groups as clearly illustrated in Fig. 1), two azacrown units (one bonded to phenyl rings A and B' and another one to phenyl rings A' and B , respectively), and four water molecules not represented in the figure.

The aromatic $Csp^2 - Csp^2$ distances in the molecule vary from 1.367 (5) to 1.397 (5) \AA with an average value of 1.385 (1) Å, $Csp^2 - Csp^3$ distances vary from 1.511 (4) to 1.522 (4) Å with a mean value of 1.516 (2) Å, $Csp^3 - Csp^3$ distances vary from 1.480 (5) to 1.490 (5) \AA with a mean value of 1.485 (3) Å, $O - Csp^3$ distances vary from 1.377 (4) to 1.438 (4) \AA with a mean value of 1.414 (2) \AA , and the mean value of two $O - Csp^2$ bonds is 1.383 (3) A. All of these are very close to those in 25,27-bis(1-propyloxy)calix[4]arene-26,28-[(5',6')(14',15')-dibenzo]crown-7 (Kim, Pang et al., 1999) and in 1,3-alternate calix[4]arene-bis(crown-7) (Khrifi et al., 1997).

Figure 1

 $ORTEPII$ (Johnson, 1976) drawing of (I) showing the atom-numbering scheme with water molecules; H atoms omitted for clarity. Displacement ellipsoids are drawn at the 40% probability level. The unprimed atoms belong to an asymmetric unit and a molecule is completed by another primed asymmetric unit translated by $1-x$, $y, \frac{1}{2} - z$.

Bond angles involving the bridging methylenes $C2-C3$ C2' 113.7 (4), C7 $-C8-C9$ 114.4 (3) and C13 $-C14-C13$ 114.6 (4) $^{\circ}$ are larger than the tetrahedral angle due to repulsions among the four phenyl groups.

Two adjacent phenyl rings in the calix[4]arene are perpendicular to each other with a dihedral angle of $A^B = 89.76 (8)^\circ$ so that the calix[4]arene has a fairly perfect square cavity. However, two facing rings A and B' are slightly splayed out upwards from the central axis with a dihedral angle of 11.6 (2)^o leading to $C1 \cdots C15'$ 5.337 (4) and $C5 \cdots C11'$ 5.870 (5) \AA , and the same for the pair of facing rings A' and B because of symmetry.

In the azacrown unit, $O \cdot \cdot O$ and $N \cdot \cdot O$ distances are $O1\cdots O2'$ 5.135 (3), $O3\cdots O4'$ 5.311 (4), $N\cdots O1'$ 4.742 (4) and $N \cdot \cdot$ 02 4.800 (4) \dot{A} , so that the somewhat flexible cavity lined with four O atoms and an N atom might enable the molecule to introduce a guest atom. Additionally the torsion angles of $O2 - C16 - C17 - O3$ and $O4 - C22 - C23 - O1$ in the azacrown unit are both *gauche* being -58.5 (5) and 59.9 (4)°, respectively.

There are four hydrogen bonds involving the N atom in the amine group and the two water molecules in an asymmetric unit and it is especially worth mentioning that two water O atoms donate and accept their H atoms to and from each other as shown in Table 1, where the distances between H2W1···H1W2 and H2W2···H2W2 (2 -x, -y, 1 - z) are 1.76 and 1.74 Å, respectively. This hydrogen-bond scheme makes an infinite molecular chain running in the [201] direction and the closest contact between the molecular chains is OW1...HC3 $(\frac{1}{2} + x, -\frac{1}{2} + y, \frac{1}{2} - z) = 2.51 \text{ Å}.$

Experimental

Into a three-neck round-bottomed flask under nitrogen, K_2CO_3 (0.96 g, 6.95 mmol), pre-dried N,N-dimethylformamide (DMF) (60 ml), 25,26,27,28-tetra(5-chloro-3-oxapentyloxy)calix[4]arene $(5.00 \text{ g}, 5.88 \text{ mmol})$ and *p*-toluenesulfonamide $(2.11 \text{ g}, 12.3 \text{ mmol})$ were placed and refluxed for 24 h. DMF was completely removed in *vacuo* and 10% aqueous NaHCO₃ (100 ml) and CH₂Cl₂ (100 ml) were added and the organic layer separated. The organic layer was washed with water $(2 \times 50 \text{ ml})$ and dried over anhydrous MgSO₄ and filtered. Evaporation of the CH₂Cl₂ in vacuo gave a yellow oil which was purified by column chromatography ($R_f = 0.3$) using ethyl acetate:hexane (1:8) to provide 4.00 g (65%) of N-tosylcalix[4]arenebis(azacrown-5) as a white solid (m.p. $421-424$ K). To a solution of 1,4-dioxane (100 ml) and methanol (20 ml) were carefully added N-tosylcalix[4]arene-bis(azacrown-5) (3.00 g, 2.86 mmol) and 6% $Na(Hg)$ amalgam (0.853 g). The reaction mixture was refluxed for 2 d at 353 K. After cooling to room temperature, the solvent was evaporated in vacuo. CH_2Cl_2 (50 ml) and water (50 ml) were added and the organic layer was separated. The $CH₂Cl₂$ layer was washed twice with 10% aqueous $Na₂HPO₄$ followed by drying over anhydrous MgSO₄. After filtration of magnesium sulfate, removal of the solvent in vacuo gave calix[4]arene-bis(azacrown-5) as a white solid which was recrystallized with diethyl ether (30 ml) (m.p. $458-461 \text{ K}$, 52% yield). IR (KBr pellet, cm⁻¹): 2926, 1456, 1359, 1176, 1094, 928, 767, 664; ¹H NMR (CDCl₃, p.p.m.): δ 7.18–6.64 (*m*, 12H, Ar-H), 3.88 $(s, 8H, ArCH₂Ar), 3.67-3.46$ (m, 24H, $-CH₂=$), 2.81 (s, 8H, $-OCH_2CH_2NCH_2$); ¹³C NMR (CDCl₃, p.p.m.) 157.3, 134.6, 131.8,

122.7, 71.7, 71.4, 70.9, 49.6, 38.5; FAB MS m/z (M^+): calculated 738.9, found 739.1.

Crystal data

Data collection

Enraf±Nonius CAD-4 diffractometer Non-profiled $\omega/2\theta$ scans 4330 measured reflections 3861 independent reflections 2185 reflections with $I > 2\sigma(I)$ $\theta_{\text{max}} = 24.97^{\circ}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.205$ $S = 0.994$ 3861 reflections 263 parameters H atoms treated by a mixture of independent and constrained refinement

 $h = 0 \rightarrow 18$ $k = 0 \rightarrow 19$ $l = -19 \rightarrow 0$ 3 standard reflections

frequency: 300 min intensity decay: 2%

 $w = 1/[\sigma^2 (F_o^2) + (0.0944P)^2]$ $+ 2.5719P$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_\text{max}$ = 0.55 e Å $^{-3}$ $\Delta \rho_{\text{min}} = -0.26 \text{ e A}^{-3}$

Table 1 Hydrogen-bonding geometry (A, \circ) .

Symmetry code: (i) $2 - x$, $-y$, $1 - z$.

An H atom of the amine group and those of C3 and C14 sit on a twofold axis and could be located from a difference Fourier map, and the positions of the four H atoms of two water molecules were calculated using HYDROGEN (Nardelli, 1999). Their positions were fixed with $U_{\text{iso}}(H) = 1.2U_{\text{eq}}(N, C, O)$, while all other H atoms were placed in calculated positions and allowed to ride upon the C atoms with $U_{\text{iso}}(H) = 1.2 U_{\text{eq}}(C)$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: $SHELXL97$ (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: $WinGX$ (Farrugia, 1998).

This project has been carried out under the Nuclear R & D Program by MOST.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1433). Services for accessing these data are described at the back of the journal.

References

- Enraf-Nonius (1994). CAD-4 EXPRESS Software. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1998). WinGX. Version 1.61. University of Glasgow, Scotland.
- Guelzim, A., Khrifi, S., Baert, F., Saadioui, M., Asfari, Z. & Vicens, J. (1997). Acta Cryst. C53, 1958-1960.
- Gutsche, C. D. (1989). Calixarenes, Monographs in Supramolecular Chemistry, Vol. 1, edited by J. F. Stoddart. Cambridge: The Royal Society of Chemistry.
- Harkema, S., van Loon, J. D., Verboom, W. & Reinhoudt, D. (1998). Acta Cryst. C54, 269-271.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Khrifi, S., Guelzim, A., Baert, F., Asfari, Z. & Vicens, J. (1997). J. Incl. Phenom. Mol. Recognit. Chem. 29, 187-195.
- Kim, H. J., No, K. H., Park, Y. J. & Suh, I. H. (1993). Korean J. Crystallogr. 4, 25±35.
- Kim, J. S., Cho, M. H., Yu, I. Y., Pang, J. H., Kim, E. T., Suh, I. H., Oh, M. R., Ra, D. Y. & Cho, N. S. (1997). Bull. Korean Chem. Soc. 18, 677-680.
- Kim, J. S., Kim, M. J., Choo, G. H., Lee, J. H. & Suh, I. H. (1999). Korean J. Crystallogr. 10, 66-70.
- Kim, J. S., Kim, M. J., Lee, J. H., Kim, J. G. & Suh, I. H. (1999). Korean J. $Crvstallogr.$ 10, 28-32.
- Kim, J. S., Pang, J. H., Suh, I. H., Kim, D. W. & Kim, D. W. (1998). Synth. Commun. 28, 677-685.
- Kim, J. S., Suh, I. H., Kim, J. K. & Cho, M. H. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2307-2311.
- Kim, J. S., Yu, I. Y., Suh, I. H., Ra, D. Y. & Kim, J. W. (1998). Synth. Commun. 28, 2937±2944.
- Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
- Sheldrick, G. M. (1990). SHELXS86. Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Ungaro, R. & Pochini, A. (1991). Frontiers in Supramolecular Organic Chemistry and Photochemistry, edited by H.-J. Schneider, pp. 57-81. Weinheim: VCH Publishers.